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TeE following pages form a continuation of some researches commenced about
three years ago, but which the author was compelled by other engagements to lay
aside until the beginning of the present year. The general theory of the functions
employed was published in the Transactions of this Society (Part III., 1881), under
the title of ¢ Toroidal Functions.” These and analogous functions are employed in the
present communication, and references in square brackets, with the letters T.F., refer
to this paper. Since it was written I have found that CARL NEUMANN had already
given the general transformation [T.F. §1] by means of conjugate functions, in a
MDCCCLXXXIV. Y
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162 MR. W. M. HICKS ON THE STEADY MOTION AND

pamphlet published at Halle in 1864, with the title ¢ Theorie der Elektricitits- und
Wiirme-Vertheilung in einem Ringe.’

The theory of the motion of vortices is interesting, not only from the mathematical
difficulties encountered in its treatment, but also from its connexion with Sir W.
TaoMsON’s theory of the vortex atom constitution of matter. In an abstract of the
present paper intended for the Proceedings of this Society, I have given some physical
speculations which induced me to take up the question of the motion of a hollow
vortex—that is, where cyclic motion exists in a fluid without the presence of any
actual rotational filaments—in which case there must be a ring-shaped hollow in
the fluid, however great the pressure may be, so long as it is finite. The essential
quality of all vortex motion is the cyclic motion existing in the fluid outside the
filament, and not the rotational motion of the filament itself. Whether the filament
be present or not, it is often possible to get some general idea of the motion that
ensues in many cases without recourse to actual calculation. Thus, for instance, the
treatment by Sir W. TroMsoN of the action of ‘two vortices on one another,* and of
the form of the axis of a ring, along which waves of displacement, are running,t may
be cited. The same course of general reasoning, which was applied in a paper on the
steady motion of two cylinders in a fluid,} will also apply to illustrate the mechanism,
so to speak, which causes a single vortex ring to move with a motion of translation.
Thus suppose a single vortex ring, which is for a moment at rest. It is clear that the
velocity of the fluid just inside the aperture is greater than outside, and therefore
the pressure less inside than outside, whilst the pressure is the same at corresponding
points in the front and hinder portions. The consequence of this is that the ring
begins to contract without a general motion of translation. But the effect of this
contraction of aperture itself produces velocities in the surrounding fluid, which, com-
bined with the cyclic motion, increase the velocities in front of the ring, and decrease
them behind. The consequence of this is a difference of pressures, which urges the
ring in the direction of the cyclic motion through the ring, and it begins to move
forward with increasing velocity. After a time this translatory motion would increase
so much as to make the velocity within the aperture approach to that without; the
state of motion will therefore be one in which the translatory velocity tends continually
to a limit.

The present communication is divided into three sections. In the first, new
functions are introduced to give the stream lines. These functions are connected
with, and have analogous properties to, the Toroidal Functions; are, in fact, given by
R=8dP/du and T=—8dQ/du. They have the property of being single-valued, even
when they represent cyclic motion—a motion which the single-valued Toroidal
Functions cannot by themselves represent. At the end of the section the values of

# ¢« Vortex Motion,” Trans. Roy. Soc. Edin., xxv.
1 “Vortex Statics,” Proc. Roy. Soc. Edin., ix.
1 Quart. Jour. Math., xvii,
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the first few terms in the expansions of the first four orders of P, Q, R, T, are given.
Section II. is devoted to the consideration of the motion of a rigid ring in fluid, when
it moves parallel to its straight axis. The functions for the motion apply directly to
the case considered afterwards of the vortex. The points of division of the stream,
the quantity of fluid carried forward, and the energy of the motion are considered.

In Section III. the problem of the steady motion of a hollow vortex is treated,
together with the small vibrations when the hollow is fluted, and when it pulsates.
The section of a ring is throughout considered as small compared with the aperture,
and the expressions giving the form of the hollow, the surface velocity, velocity of
translation and energy, are carried to a second approximation, the quantity by which
the approximation proceeds being the ratio r/{R+,/(R*—r®)}=Fk where », R—r
denote the radii of the mean section and aperture respectively ; when the ring is very
small, this is very approximately »/2R. The condition that the hollow must be a free
surface over which the pressure is constant gives a relation which R, » must always
satisfy, which for very small rings reduces to the constancy of the radius of the hollow.
For a solid ring the corresponding condition is, of course, the constancy of volume.
This makes an essential difference between the two theories. To a second approxi-
mation the velocity of translation is unaltered, and is given by*

dora

4
V=L<log 7c—%>

whilst to the second approximation the surface velocity, relative to the hollow itself, is

4
U= g {1—4(log ;+5)i}

where ¢ is the radius of the “ecritical” circle—or the length of a tangent from the
centre to the ring, and is therefore equal to R for small rings—and p is the cyclic
constant.

In the steady motion considered, the fluid carried forward with the ring forms a
single mass, without aperture even for extremely small tores, though not for infinitely
small ones. TFor values of R/r>10? there will be no aperture, whilst for less values
‘the fluid carried forward will be ring-shaped. To a first approximation the energy due
to the cyclic motion is the most important, and is the same as for a rigid ring at rest
of the same size. It does not depend on the velocity of translation, except in so far
as this determines the size of the aperture ; as entering in this way the principal term
varies inversely as the velocity of translation, and thus increases with diminished

* [April, 1884.—Owing to an error in § 3, the values given in the Proceedings require correction. ]
' Y 2
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translatory motion, a result obtained by Sir W. THoMsoN® from general reasoning.
The terms obtained by the second approximation arise from the translatory motion.

In Art. 13 the time of vibration of the steady form is obtained, when the cross
section is crimped, or the whole hollow surface fluted. For this mode the time
of vibration is, for small rings, given very approximately by ud/(2ps/n), d being the
density, and p the pressure of the fluid at a great distance, whilst » is the number of
crimpings in a section, This, it is to be noted, is independent of the energy, and
depends only on constants of the ring, and the fluid, and the mode of vibration. If
the hollow pulsates, or changes its volume periodically, the time of pulsation is
(nd/2p)\/ (log 4/k). As k depends on the size of the ring, and therefore on the energy,
this time is not independent of the latter, but it varies extremely slowly with it.
The times here given must be understood to apply to the steady motion; when the
ring is changing its size they must be modified. The investigation of this case, and
of that in which there is a core of denser matter than the surrounding fluid, I hope
shortly to take up.

Section I.—The jfunctions.

1. The functions whose properties were investigated in my paper oun Toroidal
Functions are only suitable for expressing fluid motions about circular tores when
there is no cyclic motion through the aperture. It will be necessary therefore to
investigate some method by which this can be taken into consideration. If we
consider only motions symmetrical about an axis, and in planes through that axis, it
is well known that the motion can be represented by StokEs’ stream function. This
function is only multiple valued when there are sources or sinks in the fluid, the cyclic
“constants in this case being the normal flows outwards through surfaces completely
enclosing the various sources or sinks. If ¢ denote the stream function, the velocities

at any point are given by ~ bgﬁ, 1—2‘;{’, and, when the motion is irrotational, ¢ satisfies

the equation

o
wr by B 1

2 p bp

To transform this to the independent variables (u.v), where u+wvi=f(p+=), we
notice that the kinetic energy of fluid motion within any space, with given normal
motions over this surface, is a minimum when the motion is irrotational, or the above
differential equation is satisfied. The condition is therefore found by making

S+ e

* «Vortex Atoms,” Proc. Roy. Soc. Edin., vi,, and Phil. Mag. (4), 34.

a minimum. Now
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_d(zp) __1
dzdp = s )d udv= T’
dn
Therefore the expression to be made a minimum is
LI(3Y (o)
L’Kbu) +<bv> }du-d”
LNAR AWICNER. AN -
w(,, bu)+bv<p M>_o R )

P=x+/p

dudvy

whence

In this put

and the equation in x becomes, remembering that

dp | O
but T 8

By Bx_ o x[ (), (V] _
bu9+ ov? _zp2{<bu> + bv) } =0
The particular transformation employed for the Toroidal Functions makes

() (2]}

Oy O 3 _
s To 22 X=0

=0

whence

Put x=8"'R, cos (nv+a), where R, is a function of « only; then R, must satisfy
2
— e —— (2 —1)R=0

which may be compared with the equation for Toroidal Functions, viz.,

P  CdPp

du2+S du—(n2 l—)P—

It is easy to see that the equation in R is satisfied by

apP
R=AS%
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We will choose the constants so that the two integrals are

dP 4n

olQ 4n —1 (2)
T,=-8 du =" Qn—l QM])J
also
dR, daT,
= (nz—é)SP,,, ek (n*—%)SQ.

The value of ¥ is now, putting in the value of p, viz., p=aS/(C—c)

1[;_\/(0 )20 (A R,+B,T,) cos (nv+a)
and clearly R, T belong to the same spaces as P, Q respectively, that is, R to space
outside, and T to space inside a tore.

It is easy now to prove from the value of Q,, viz.,

T COS NV
Q,M/2=L \/(O_c)dv
that

An2—1(" ’
T,=— ngfocosnv¢(o—c)dv-. R )

The R, T are all positive, except Ry,

2. Cyclic constant.—The cyclic constant of ¢ is the flow along any closed curve
threading the tore once. We know that this must be independent of the form of the
curve. To find it, choose the curve to be u=wu"a constant; the flow along this is

then
ey dudng, (710
j.o p du dn ol'udv op budv

the velocity in the aperture being in the positive direction. Consider first the
general term in R, ; the flow due to this is

%"»2#{\‘/(0_0)%_2\/5_0)3”} cos nvdv

2An

{(m_-)SPM/ (C— cos v) cos nv—4SR, j?éﬁ’c)}d
~221,p,—RQ.)

_An/2(p dQ, i -
T oa < " du Q”du> \/2A [T.F. 248

24,
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which is independent of wu as it ought to be. The corresponding terms in sin nv
evidently disappear. Similarly the terms in T, would produce

B2 Q@); .

" du

Hence the cyclic constant is

2
p=="CA L@

8. In the paper on Toroidal Functions several examples were given of the deter-
mination of the potential function ¢ when ¢ is given over a tore; but when the
variation of ¢ along the normal to the surface is given, the determination of the
co-efficients becomes more difficult, and one case only, for the motion of a tore
perpendicular to its plane, was given. It will be well, therefore, to consider here
the general theory for this class of surface conditions. The co-efficients are to be
determined from the fact that ¢ is (1) finite in the space considered, and at infinity,
and (2) d¢/dn has a given value over the surface of a tore . Here I consider only
the case where the motion is symmetrical about the axis, and therefore the normal
velocity given by a function of v only, say f{v). Condition (1) is satisfied by space
outside the tore by taking only functions P,. "We put then

¢p=1/(C—c)Z(A, cos mv+ B, sin nv)P,

and determine A,, B, from the equation
bgb du
J)= " ou dn
when u=1/, for all values of ».
Consider separately the terms in cos nv and sin nv. For the cosines we have

a¢ 1 dp,
= (O )EO {SP”-I-Q(C—-C)%}COS n
For shortness write g—g =P’. Then
b / ! 4
2 > (O 5763 (SPo+ 2P ) Ay— AP, — A P’y cos 0*+3, {(SP,+2CP’)A,
— A P —A Py} cos nv)
But
SP,+2CP, =P, ,,+P,_, [T.F., p. 646]
SP,+2CP' ,=2P"
Therefore
b¢ , / ’ ’
bu 2\/(0 )[(ZA AI)P '—'A P OCOS’U-l—El{(A” A7L+I)P 741 (An_l—An)P ”—1} COS%U]

* [April, 1884.—This term was omitted in the paper as read. It has necessitated slight alterations
in some of the results then given.] .
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and
duw C—c

an~ @

"Hence the A have to be determined from

(C— ,.);f (v)=—(2A,—A,)P' 1+ A P'jcosv—3, { (A, — A )P — (A — AP, } cosny

Suppose now

J)= < >*am cos mv

Then, writing for the present (A,—A,_)P",._P’,=x,

Lyyy =, =0 n>m
ce .. =0
2aet,,
Ty — L= ‘/SP
Lup1 —90,,:01I n<m
e e .. =0 L
@ —2,=0 j  where xy=A P P,

Hence for
n>m-+1 x,=%,,,
n<m x,=x,=0
and
a“m ’
Ty = 8 P,
or
x — 20%npy (n>m)
n— «/g m e
x,=0 (nZm)
Therefore
2ac,, P,
An—An_1=—;/—§‘P—~’nP,n_1 (n > m)
A,—A, =0 - (nzm>1)
whence
A=A, 2% ZaumP, r=n 1 (n >m)
- \/S 'r—m+1 P Plr -1

A,=A,=2A, (nZm)



SMALL VIBRATIONS OF A HOLLOW VORTEX. 169

or

20 1, =0
m

1
An_ 2A0+ \/S r=im+1 P'rPlr—q

(n>m)

A,=2A, (nZm)

The co-efficients are now determined to the extent of one arbitrary constant. This
appears because ¢ is also indeterminate to the extent of an additive constant. As
this constant is expansible in a series of the form ,/(C—c)SA, cos nv, it introduces
the undetermined constant A, above, which must be determined by the condition that
the series must be convergent. This cannot be unless A_ =0, which requires

at, Py o 1
Ag=— NG Zni1 PP,
whence

a0, o 1

A=——T5 . (>m)
5
A=l L (n=m) ?
n— \/ S m+1 P,rP/r—l < J

~ So also the terms in sin nv will give

2 , , .
EO_—%% JW)=—3,{(B,~B,; )P ss1— (Bie;—B,)P’s_,} sin mv

and the particular case f (v)=<9—§-c>’,8m sin mw produces the same equations as before,

except that the last is

xy—x;=0 where x;=B,P’ P,
whence

20Bm < 1
\/S P m2m+1 P,rP,r—l

, , n 1
Bn-_—- B]_P OP 121 P/,I.P,,.__1+ (n> ’l’rl?/)
P | -
B,=B,P,P’;3, TR (nZm)

and the condition of convergency determines B,, so that
MDCCCLXXXIV. Z
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Em 1 W
2a8, P, 1T P’,. 1
Bn: - NG ' 27l+1 PV, (’l’b > m)
21 P/ P/
! N ()
SH—
2aﬁmP,m m+l P/ Pl? =\
Bn= \/S 2 1 = 2IP/ P/ (7L< m)
1P, J

It remains to show that with these values of A,, B, the series $A,P, and $B,P, are
convergent. The parts of A,, B, depending on 7, when 7 is large,

@ 1 @ 1
o« 2ﬂ+1 Plﬂ‘P’r-l =)\2n+ 1 P,rP’r-—l
Now
P\, P,=CP,, 1 P,—CP,,
P, —CP”—P”_I—C P,—-P,,/C [T'F" 12, 13]
1 .
< g since P,>CP,_,
Hence _
£ 1 1 1 1
2n+]P,rP,r—1<P’n+1P,n_1{1+6+Cs+ PR }
< ¢ 1
C—17P,,P,
Therefore
P ltimately <o ormt
is ultimately —1 P’,,HP’

or the series are convergent.

We are now in a position to determine ¢ for any normal motion. All we have to
do is to expand {S/(C—c)}¥(v) in a series of sines and cosines of multiples of v and
consider each term as giving rise to a value of ¢, whose form we have just determined,
and take the sum of the various values.

A form for oy/dou analogous to that for o¢/ou can easily be found. If

ll!—\/(c_ )EA R, COS 1V
o 1 .
T\’L’::(O—c)%z{(o_c) du n}An COS v
5(0_1_0) { (cos n4-1v4 cos n— 1v) Cillz”}A
S 1 dR, dR,, dR,_
=2(C_c)%|:—%AOP1_%A1P1+§ 21{( dw —SB%)An—A”_,_I du I'—An_l du 1}COS %’U]
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But
dR, ‘ . S
20 —8R,= (n"—3) { 20SP,—_ (Pn+1_Pn_1)} = (12— 1)S(Ppsy +P,_y)
Hence ‘
.%”:2(03_ c)%{—%AOPl—%A]P1+£AOPO cos o3, B, cos m)} C ()
where

B,={(»*—1)A,— (mz_%)AnH}Pnﬂ_ {(7—’__—1_‘2_%)*%—] —(n*—1)A} Py

4. For reference I here insert the values of the first five orders of the functions,
expressed («) exact in terms of the elliptic integrals, and (8) approximate in a series
of ascending powers of the modulus. Throughout this paper the moduli %, &’ are used
instead of the ¥, k of the paper on Toroidal Functions. It has been thought advisable
to do this as all the approximations go according to powers of % (the old ). Hence,
of course, E, F appear in place of E/, F’, and wice versd.

We know that P,=a,l'+8,F, Q,=a«,(F—E)+B,F.

Hence for the first set of formule we require only to tabulate e,, 8, For the first
five they are

%=0 Bo=21
o =2k~* B,=0
a,=%(14+k)k* B,=—2I
HETEHTEREE Bo=— L5 (1)1 - ()
=33 7(6+ 5K+ Sk +6A)E, Bi=— —2—(24702-1- 23k} 2448
“5=5}'§(1 284 104k2+ 99k 10445+ 128%8) k8, By= — —s——(16k2+ 15k4 415k
- 16%)k-

These are exact. In the applications which follow % will nearly always be a very
small quantity, so that a few terms of the series will give the values very approxi-
mately. By substituting their values for E, F, E/, F’ in terms of %, the expressions

become, writing L for log%

Po=2{LA-4(L— 1)+ (L—+ (L —3DF+ . . .} )
—z{1+%(L—l)k2+—3-(L—%-%)k4+—ll$s—(L—%)k6+ R L
2—3{1+3k2+'_‘(1‘ 2

P3= {1+5k2+45k4+_1

28(L L N roeo- 9
Py=35 {1+ 30 - 32805+ . . L 3k
256 N
Po= g {1+ b+ %M 5+ L 3

zZ 2
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Q{1+ el 2l . 18
UirliH T

8 (1 +‘—-7€2-|- )

bm >. . . . . . (10
Qg:”l‘gk%+ e
Q=0+ ..
Q5=0+ .

-

Ry= — (AL —14+3(L4+ 1)+ tis(L—DF 45tz L=+ . . 35

R, =3 {1 —3(L— DB+ (LA DM+ rds(L—28)B 4 .. 35

Ry= {1— 58— L—DH (L2l . i L (1)

Ry=4{1— iR~ —$3BL—20)K+ .. Jb
%

64 2
R,=&{1— 3 — 31 —108k54 .. . }4

-

Ty=La(14LR 4 ek tgtel . . )b
Tl—?’g’ TR B
L N ¢ 1))
7’(1— 14 ., Ok
To=83nki4 . J

Section IL.-—Motion about a rigid tore which moves perpendicularly to its plane.

As the motion of a tore throws some light on the analogous problem of the uniform
translation of a vortex ring, and as the functions required in its discussion will be
needed in investigating the latter, it will be useful to give a short treatment of the
question, especially as the motion can be determined for any size of tore, whereas our
methods, in the case of hollow vortices, will only apply when the cross section of the
hollow is not large compared with the aperture. The stream function is necessary for
the cyelic motion, and it will therefore be convenient to take the stream function also
for the motion of translation.

5. Stream function for cyclic motion.—If the tore be given by w=u’ the conditions
which ¥ must satisfy are that it must be finite for space outside the tore, and be con-
stant for all values of v when u=w'. Hence ¥ must be expansible in the form

1[:—-\/(0 AR, cos nv
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Let ¢, be the constant value over the surface of the tore. Then, dashed letters
denoting the values of the functions on the tore,

™ AR, = 4/(C'— cos 6) cos nddf
0

= 2\/211’0 T,  (by Eq. 3)

4nt —
but
7TA.0R/0= 2'(,10 \/§T,0
Hence
200/ 2 [ v T Ra
b=2/2 ){TOR, ety |t

This is more convergent than 3T,, and is therefore convergent.
Let p denote the cyclic constant, then by (4)

] _To o 1T
’l, @ { 0+221 477/2—1 R’n} . . . . . . . (14)

When the section of the tore is small compared with the aperture, the value of w,
correct to the fourth power of £, is

—_—2“%{1%5 (1 o 2)2>k2+4,<2L 1+32(71I"+21;>k4}. .. (15)

6. Stream function for translation.—In the preceding case the conditions were that
¥ must be constant over the tore and finite at an infinite distance from it. In the
present case Y must be finite at an infinite distance and =%4Vp? over the surface, V
being the velocity of translation, and ¢ the stream function for the tore moving in the
fluid, at rest at infinity and referred to its instantaneous position. But if this condi-
tion be applied, we shall also, on account of the cyclosis, obtain besides an added cyclic
motion through the aperture determined by the surface condition y=0. It will be
necessary to subtract this cyclic motion therefore from the result obtained by applying
the condition above. This condition gives

S/2

SA R, cos nv=1%a V< o

for all values of .
Therefore
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1rA R/ —lazvsw[ __cosnb 19

(C'— cos 0)}
__ava® [T cos nf
=—a’V8Y, ."\/C’—cose

= —aQVx/2b’ —oﬂV\/_T’
but
wA R, =a*V,/2T",

Hence

2 V / v
’1"_7,.?/\({32 ){ oR, +221Fn—R7 cos n’v}

a convergent series.
The circulation of this is by (4)

2@V< 221 R, )

Let the stream function for this be

29pn/2 R,
W\/(O-C){TIOR’ 221 4 2 1R, COs m;}
Then
4‘!’0 Tlo 1 T, T/
a { +221 Ant—1 R’ } 2aV< 221 R’>
If then
T/
A= R’ 221 _R’
= T : v

—®, O i v
The stream function for translation alone is

2/ 2V , R,
¢=;0\L7(\%—_—c){(1 )\)TOR,-|-221<1+%2 >I‘,,R—,ncosm;} . . . (16)

The principal term here is the second, in Rl.b To k* the value of \ is
21
)\=1—4(L—2)k2—(2L2——2—L+16>k4 .

‘The value of s along the tore is
1V (p—a)

The stream lines will of course in general be closed curves, having their extremities
on the surface of the tore; one set going through the aperture, and the other outside.
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To find the point where the two sets meet on the tore, we notice that the stream line
there goes to infinity, and its value is the same as for a point on the axis, it is, in fact,
a part of the same stream line. For this ¢y=0; hence the point on the tore, where
this stream line meets it, is given by the value of v, which satisfies the equation

(1 —)\)T0+22T<1 +;;£_—1)T% cos nv=0

where T, are the values of T, when u=u’

It is clear that when k is very small, cos v must be negative, that is v> 1=, or that
the point of division must lie inside a tangent from the centre to the tore.

7. Combined translation and cyclic motion.—The expressions just obtained enable
us to determine the amount of fluid carried forward bodily with the ring. Let x
denote the ratio a®V/2yy ; then the stream function for the combined motion is

/2 gp Ba
Y= o/ (O— )EA”R’ oS Y

where

Ag={1+(1—Na} T
A,=2 {(1 +4n:»—1>x_4n21—1 } T

This is the stream function when the fluid is at rest at an infinite distance. To
find the portion carried forward, impress on the whole system a velocity equal and
opposite to V; the problem then is to determine the portion of fluid which remains
circulating round the ring at rest, without streaming away. The stream function for
the new motion is

=y—4Vp’®

The portion remaining with the tore lies inside the surface given by putting x equal
to a certain constant, which we proceed to determine.

This portion may either be ring-shaped or not. The limiting case between the two
is when the velocity at the centre of the tore is zero. The value of x for this case we
shall call the critical value of «. It is given by

1oy
P b’N/ dan 1h=0,0=1

8 2 1 SP,
N o]~ 3= VA A =D}

mad =08

=0s(— pu— )

or
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m:—{1—|-(1—)\)96}%2-1—221(—)”{(4%2—-1+)\)m—1 }?’R~

T, _ T, T T,
m{1+(1—)\)R—,0+221(—-)” 1(4n2—1+k)§7n}=—37‘(’)+221(—)““1R7,;

The right hand member of this equation is the velocity at the centre due to the
cyclic motion alone, divided by 2y/a® Call this velocity V,, and denote the critical
value of V by V,, then :

A T, , . — T,
VZ=1+(1_)‘)1?;;+221(_) 1(4n2_1+)‘)R'n

The most important terms in these expressions are

T 1
mozm{l+(3L—6—47T—%I‘:—2)k2+ ce s } a8
v . .
V(l)=1+47k2+ e |

The stream lines will be given by

Y—+Vp?= const

and by choosing the constant properly, we may make this represent the surface of the
fluid carried forward. To determine the constant we need only find one point on the
surface by the above method. If the value of w is less than the critical value, the
surface will extend to the axis; in this case the best way will be to put =0 and

find v from the equation
y[L o
T lp du dnfu_g

If on the contrary x is greater than a,, the surface is ring-shaped, and it will be
best to find  from the equation
v=[Lor ]

pdu dn lyr

If = be negative, or the velocity of translation and the cyclic motion within the
aperture be in the opposite direction, the corresponding equation will be

| L du
V_\:p du d”:L:o
In tabulating corresponding values of u, v and V/V, the best way would be to
insert values of u, v and determine V/V, The following numbers in the case of

k= sin 1° were obtained in this way. For the case of x less than the critical value,
the surface cuts the straight axis at points given in the several cases by v,
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v 60° 90° 120° 180°
"T
v, 125 3565 652 1

For a ring-shaped surface
©%=2'9662, v=180, and V/V,=1699
whilst for a negative translation
u=2'9662, v=0, and V/V,=—"3708

are sets of corresponding values.

8. The energy of the fluid motion.—The energy is given by

[0+ (0 el [ (2] 42

supposing the density of the fluid to be unity. Treating this in a similar way to the
analogous expression in terms of the velocity potential, and remembering that when-
ever the volume of the surfaces immersed remains constant, as here, ¢ is single valued,
we shall find (by means of equation 1) that

E=7Tf x// oV g

the integration being extended over any meridian curve of the solid, and dn being
measured inwards along the normal (.., from the fluid).
In the case, therefore, of circular tores

Sy du dn’ oy
j oV du on dv” = [ p ou
Now we know that for the cyclic motion the energy is 4 X cyclic constunt X flow
through the aperture, and, therefore, with our notation is pXmj,, But it will be
interesting to see how this is also arrived at from the preceding expression. The
whole energy can be put in the form

= (aps’+ B+ 2ypar)

we proceed to determine e, B, y by means of the above formula.
. Here along the surface =1, a constant, and,
MDCCCLXXXIV. 2 A
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o 1
1oy 2{ 2\/(0 c)+ P\/(C—c)}A oS NY

p u
Therefore
2w 1 b\P‘ 1
L p ou dv= 2 {—%RnQn\/2—ﬁ PnT,z} A,
=738 (Q. P, 72) A,

_m/2sA,  [T.F., 24]
a

=p  (by 4)
Hence energy =muyy, as is right, or

ar o 1

o=
4 1 T,
o ‘P‘o _|_221 ym R_

B. Here ¢ along the tore is 3V (p*—\a?), and denoting the general value of y by

Py s,
B P =mx I LV (p? —7\0&2)

Now J’ 0 pd % dv is proportional to the flow round the ring due to translation alone,

and is therefore Zero.

Hence _—Lr,, " )
B—awro P sy @Y
But
2rn/2 R N R,
¢2=W\>!’(00\/_c){(1 —)\)T’O.ﬁ?;-l- 22 (1 +M> ” i{T (o)} %1)}
_ 292
—m/(C—0) AR, cosmv  (say)
Therefore | 28/\/2]% Loy, .
p= o C'—c du
Hence by 7
,3=4S;/2f boo c),I_[ —3A,P; —$A, P4 AP, cos v+3, B, cos nv]dy
Now
T COS molfv
Q2 ]’ (C—of

Therefore
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meosaw 5 2/2dQ,
,(o (C——c)%d,v—— S du

r cosnv  _ 4/2d (1 dQn)

0 (C—=e)f T 38 [du\S du
s oo _ dvyee._om
oC—of = 3 \ @8 du
RV.I 50
- {(4 —1)Qu— du }

Hence dropping the dashes, and » denoting the value of u along the tore

A=) B8 Py Qum G T AR 30+ )+ 5B (- 1)Qut T,

A, having the values given above, and B, the values given in 7.
~ . The value of y is given by

yparp,= v[ ”m(¢18%+%b§£1>

1oyy

Here s, is constant and j 5 =0 also

op

oy =4V (0" — W)=%"(p2—m“’)
Hence .
=T (") L1
‘y——“z‘l"ofo(p Aoy ) p du d’v.
Further[ ': g, is the flow along a closed curve threading the aperture and is
therefore the cyclic constant u. Therefore

__ A [T oy
"= «#f w ™

The last integral may be expressed as in the analogous case for 8.

Section IIT.—Steady motion of hollow vortez.

9. The form of a hollow vortex and its motion are conditioned by the fact that the
velocity of the fluid relatively to the hollow, when the motion is steady, must be
constant over the whole surface of the tore. When the section is small compared

2 A2
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with the aperture, the section will clearly be very approximately circular, and to a first
approximation the motion will be represented by the stream function found in the
previous section, the value of x therein being chosen so as to make the coefficient of
cos v in the expression for the velocity disappear. This will give the first term in the
expression for the velocity of translation of the vortex, when it moves forward
without change of form. In order to arrive at closer approximations it will be
necessary to take account of the form of the section, and this is done in the following
investigation, so far as to get a second approximation, although the method employed
is capable of being carried further, of course, with more and more complexity in the
calculations.

By impressing on the whole fluid a velocity equal and opposite to that of the
hollow, the hollow is brought to rest, with the fluid streaming past it. The stream
function in this case becomes

290/ 2 R,
(C—c)2+ J(()() )EAnR, cos nv

A= {14+ (1=N}T,
A=2 { <1 +4n2x— 1>w_4n21—1 } T

The values of the first three are

y=—1aV

where

Ag= T[4 3B e+ (4(L— 2+ (L= L+ 10k ]k )
=fz’[{z_tt—%(sL—15)7c2—(2L2 L4178k wk— (1 =30 — O8]k b (19)
Ay=1;[{16F—4(L—1)kJw— (B —1h9) ]~

The approximation proceeding according to powers of %, each coefficient is one order

higher than the preceding.
Let U be the velocity at any point of the hollow. Then, to the first order of small

quantities, where the section is circular
Go[Lov ] =y
p ou dn |y a*S U |u—w

_'\{_r__ xS /2 R
e =g T ry/(O= >< R/, +A1R’ o8 ”)

The part of U due to the first term is

where

ﬂ_ wl Ce
2y Tt C—c
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In finding the second part it will be well for the later approximations to carry ¢ a
term further to include A,. Then from (7), if U, be the part of U due to this

0;};2 ‘/2\/(0—0) {B,+3=B, cos nv}
where
P P
Bo— _%AOR_}O %AI 3711
P, P,+P P
B1=']2‘A0§%+%A1( OR’I 2 L Azﬁ/’z

A, Anpy A,
B,={ (=) = 1P =1 2} P — { =T D g2 = 0= | Py

These values of U,, U, are to be expanded in a series of cosines of multiple angles.

But here it is only needful to keep terms of the same order as A,, or compared with
A, of order /. Now

1
20=k—|—7c‘
Hence
1—-Ce 1 cosv , cos 2v
C—¢ =<0 ><1+202+ T0 >
1 1— cos 2v 2v 1 3
=3 ( 402> €08 V——5 = — o €08 3V
=k(1—F*)— (1 —F?) cos v—k(1—k?) cos 20—k cos 3v
Also

v 5(0—0)*{B0+2Bn cos nv}

2
—«/20{ 1602 c;zv_c:gcf} {By=+ B, cos v+ B, cos 2v+ B, cos 3v}

12— k(1 —%?) cos v—1k? cos 203 {By+ . . . }
= {141k*—k cos v—1k? cos 20} { B+ B, cos v+ B, cos 2v}k~?
= {143k —Fk cos v—1k® cos 20} (By+ B, cos v)k™ 4 (1 —% cos v) Bk~ cos 20

considering at present B, and B, to be of the same order.

From this it is easy to
show that if
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a?U_ h
D =a-+ cos v+ cos 20438 cos 3v

a=—h(1 =Bt 5 (L+3)BA" — - B

v

1 1 1
B=(1—F)e— Bifi+s- (1+31)Bh—— o Byl

1 ., 1 1 _
'y:k(l —kg)w—‘é; BOICE—4—7T Blk§+g Bkt

1 _
8=Wa—— Byl — L By Byk~ J

For the first approximation the lowest term in £ in 8 must vanish. Hence

1 1 i
Now

and the lowest terms in B, are

B,=3A) b

Substituting the values of A, &c., from (19)

1 2
_ ] —_—
27TBO"‘16k %L—-l 4

4z—1
3
8 Itak

il
=;};L——-_2 —%(493— 1k

1 k—% AW
L
Hence
1 L
Tty tr—E—ag_3=0

2L—1
=3T3
2L—-1

r=1% L

(20)
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To the same order
2 v
=t (L—2) by (15)

Therefore

V=L@mL-3) . . .. .. ... @1

dra

The principal term in U is found by equating it to the principal terms in o, .e.,

U, 1 =1 k1

2, 27 41,3

and is therefore independent of the velocity of translation, as ought to be the case,
since the latter depends on the difference of the cyclic tangential velocities inside and
outside the tore. Substituting for ¥,

I
0 darak

Now, for steady motion, the equation of pressure gives at the surface of the hollow,
if I and p be the pressure at an infinite distance, and the density of the fluid
respectively

%E___Uoz
P

Hence U must be the same for hollows of all sizes, and consequently ak constant for
all the steady motions of the same vortex. When the hollow is small this is approxi-
mately the same as saying that the radius of the cross section is constant. The
corresponding theorem for a solid ring is of course that the volume is constant.

10. For the second approximation we need to determine the stream function when
the cross section of the ring is not an exact circle. The following investigation is
slightly more general than is necessary for our present purposes.

Let k be the value of & for the mean section, and let the section be given by

k=Fk-+3(M, cos nv+N,, sin nv)=Fk+§, say

where M,, N, are small quantities with respect to &. When the tore is at rest with
fluid streaming past it, the stream function is

S 2 2
Y= —x (G_c)g—l—mf((g/ 3 A, B fi’_ oS 1V

where the A, have the values given in (19).
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Let the stream function for the non-circular section be y-4-x where

X, cos nv+Y, sin nv) &, I

1
X=c=9 R,

and X,, Y, are also small. The necessary condition is, that when « has the value
given above, y+x must be constant, say y/;+e Then neglecting squares of &

W, Fe= ¢0+5‘If &+ J(C 3(X, cos nv+Y, sin nv)

o)
The value of e is arbitrary, since with any given surface conditions the circulation
remains undetermined. We shall choose it so as to make the circulation zero. It
would be impossible to determine X,, Y, in the general case where both ¢ and dyi/ok
are infinite series; but in the case required in the present paper A,/A,_; is of the
order %, k being small, and the terms in A, are neglected after A,. This simplifies the
calculation, and it is easy to determine the terms X,, Y, in terms of M,, N,. But it is
further greatly simplified by the fact that in the case to which we have to apply it the
velocity along the surface is already uniform to the first order—in other words

UG (b4 e

a®S, \oéx /ydu
whence ;
o\ _ a®S,
(==t U
Hence the equation determining the X,, Y, is
€= — k(g "o U€+\/(C 3(X, cos nv+Y, sin nv)

But since in our applications £ is itself so small that k* has been neglected compared
with unity, the above becomes

e=—20a*(14 3%+ 4k cos v+46%? cos 20) U ¢ ,
4/ (2k) (141K 4k cos v+ 3 cos 20)2(X, cos nv+Y, sin nv)

The various normal functions will therefore be composed of a set of principal terms
in cos nv, &c., each corrected by an infinite convergent series of small terms of the
others. The principal will be given by

e=—20?UZ, (M, cos nv+4 N, sin mv)+ 4/(2k)2(X,, cos nv+ Y, sin nv)

Therefore

%=y Vo=

202U 202U
NG M, Y.=—>-=<N,

X= NZED
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The series connected with X,, Y, to complete the solution for a given M, N, are
found from

0= —2a*Uk(3%k~-4 cos v+ 6k cos 20)M, cos nv
+k(tk+ cos v+32k cos 2v)(e+20°UM, cos nv)
+/(2k)(1+k cos v)2X, cos nv

with a corresponding equation for Y, in which e=0.

We need only consider for the first approximation the principal terms, which give

207U

(M,, cos nv+ N, sin nv) T,

Since the circulation is to vanish,

e+ 20&2M,,U= 0

20°U 1 {

X= 3 6= ”R’ -|-(M cos v+ N, sin m))R, }

11. We are now in a position to determine the first term in the expression, giving
the form of the hollow, viz., that part which will destroy the term in cos 2v in the

value of the surface velocity. U denoting this velocity we have .

- )

Now at the mean section oys/dv=0, and is therefore at least of the first order of
small quantities near the circle u=wu, Hence

U= {w L }

(Cy—o)*(dy
=U+ o*S, <bu)
where
“23 —oc+,3 cos vy cos 2v

and a, B, y are the values given in (20) when k4§ is substituted for % in the functions
Now € is of the form M cos 2v, hence

202U, M
=@ ¢<0—c>{ ¥, +" cos 2”}

MDCCCLXXXTV. 2B
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Therefore

ik ="vaw |~ o+ o g e o)

(0—6)2<§gc> _(C—=¢)MU
a*S \ou

and

O_WQ{Z—2 cos 2v+(C—c)< o+15 _ cos 2@)}

The principal term here is

MU, CP, , .. CP, >
- =0 —= 2
1% (2 2 cos v Ro+1.) R, cos 2v
MU, 2L
= 2 P ———
= ( I—2 2 cos 20410 cos 2’0)
MU,/ 1
— <L—2_2 cos 21))

It remains now to determine «, B, y to the same order of approximation, that is so
far as the first power of £, '

o= —Kx-l- BOK_%—*— B«
1 1[4 -
= —ka+; - [Bh —4Bik | — b —5 - I:@ (B %)]Og
—1 L 1 d _
—k(x0+8w)+%L£_—§—%(4wo—1)70—%(4930—1—m)]c— {x0k+% L By a)}o.g

Now b
By=— AOR, —Ag
therefore
ap, ap;
(BOK H=1Bk t—k"t< LA, du 3A, du du
| R, R,
therefore
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Therefore, substituting the value of x, already found

L k1 k1
a=—%<6x0—1—%L_2>70+1}L_2 I{L 5— (2)— )k}f

JL+5 B\ E
L <L—2>Ic

for, since £ is at least of order %%, the last term in the factor of £ can be neglected,

and

JL+5 Uk
2= —§7 ‘?k+4L 54,9
again
17d _ 14
/3=30+am0+2—7—r[@(30,é—31x%]§ i (B —Bk)oa,
Now
o (B0 =g { s (B + By |
1
=gt =0
Also since
P,
BI=ZA1P/ l1&01:)'
dB
d_=2AISR %A(%
1 dB,
o SA=3(dr—1)+ 3R
L
53 Bu)=H(ta—1)+i+4{H(te—1)—4. 175
1 1
='1_(4x0_1) %L 9 —%L 9
also
1 4 _
o o (Bi—B)=—
therefore
1 £
B=20m—31 53,

1 1 1

The principal term in B, is
B,= 145A %Alll%

232
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therefore
LB =15 (1 km g (da— )R 2
PP R R B '5(160—1) _I"s‘( x—1) 17
2

=1(2o+ 1)
[ 1 L :
={o v g} (=1 = g+ D) |
2L—1 12L—15
(wo-l- i 2>k‘—'16 Tk
Hence, substituting their values for o, 8, y

— B L+ - 24,
U=!{1 1
"{41,—2 gt L 2M°°S 2”}

therefore

2 , 12L-15, _MU< 1, 00821))

o 16 g MCeSAVTTIAT Ty

The condition that the coefficient of cos 2v vanishes gives

U, ;2% 12L—15, 29,
M{ B AR 2)]]"'16 T3 © =0
or since '
2,
UO_‘*L 2 a20
therefore
M 12L-15,
119 16 [
or
M=—1(12L—15)k
Also, since =0,
02,=0
Therefore
‘__2_‘1.’9 1]51__11‘_'_"_5. }
U=" {IL—2 §L—2k
"
= P (1= (LA )R}

Hence, :
(1.) The velocity of translation remains unaltered to this order.

(2.) The form of the hollow is given by
k=k{1—1(12L—15)%* cos 2v}
(8.) The surface velocity is

4‘;@{1——(1*5)762}
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The effect of the correction to the form of the hollow is to make the section slightly
elliptic with the major axis perpendicular to the plane of the ring, and with the inner
side slightly flatter than the other.

The value of x obtained above is, when £ is infinitely small, larger than the critical
value givenin (18). The fluid carried forward will therefore be ring-shaped. If for a
rough approximation we take the two first terms of the expressions, the value of & for
a hollow vortex in steady motion, und carrying forward a simply connected mass of
fluid, will be found from
4 +1

L=2

or

dri1
k=4de~ "2 =488

=00522 very nearly

this would make R/r=10% about. Since k is so small our approximations are very
close, and it follows that for even extremely small cores of hollow vortices, the fluid
carried forward is a mass without aperture. For infinitely small ones this is not the
case.

The form of the hollow has been determined above by the value of k. If the normal
variation from the circle be denoted by on

dn du @
Mm=- — k= —:41,—6:‘6‘

T T (12L—15)%? cos 2v

78 "8R
= _T%R_(l\z log, §?_7—— 15) cos 2v

The figure below represents the form given by this expression to a circle in which

r/R="2. Though this value is large, it shows the nature of the change of form better
than a smaller value.
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12. On account of the constant surface velocity along a hollow vortex, with fluid
streaming past it, it is very easy to determine the energy of the motion, when the
- ring moves through a fluid otherwise at rest. For §8 the energy is given by

21r.\£ é—,\k _ 7. ,
7;-L > B olv-_wLU s

where ds is an element of the arc of the cross-section, ! its length, and U’ the velocity
along the surface regarded as for the moment fixed in space. It is therefore the
component of V along the surface and U, that is

=U+V§'—;—'—’3

Also
Y=%Vp?+ const

=4V(F=\a?)+y

 Hence, to the first order, where the section is a circle, the energy is

o (U+V—~>( , —)\a2+%Vp2>'rd0

where

p=R-rcosd
Therefore the energy is

mr” U+ BV (RR—202)} + (RUVP 4 VRe) cos? 0146
=208 [U (gt BV (R —Aa)} -+ V(B0 + V)]

But
Y .
T dmak
V= 47m (L—%)
M
=£4(1,—9)

Substituting these values, the energy is
%pzﬂc-l{ —2+ (R2+%r2—)\oﬂ)(L—§)+ as(L- )%}

Now to the order of approximation of circular section A=1, r=2ak, R=a, and the
energy is u%a(L—2), which is the same as for a rigid tore at rest. If the shape be
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regarded, then since here the variation from the circle depends on %, we may treat it
as circular in the integration, provided we do not carry our approximation beyond 42
In this case :
A=1—4(L—2)%*, r=2ak, R=a(1—2k)
and the energy is

$pfa{li—2+(L—3)(L—HF+H(L—4)"}

=dula{(L—2)+}(2L—1)(BL—11)k}

To the lowest order this is
3
= (L—2)(L—})

13. If the steady shape as just found receive a slight disturbance symmetrical
about the straight axis, a series of waves will be propagated round the hollow. To
prove this, and to find the time of oscillation for different modes, will be the aim of
the remainder of this paper; and firstly I consider the case where the cross-section is
crimped into a form given by é=8k=M cos nv+N sin nv, where M.N are small com-
pared with %, and functions of the time. Since they are functions of the time, the
volume of the hollow will change, and consequently the stream function will be cyclic.
The rate of change of volume is

."2" 2 dn vo_lﬁ'_o_b? 2n M cos nv+ N sin mdv
0 dak dﬂ—k_}'o (C-—(})2
__o_ﬂ_lilr" cos 1Y dy— ﬂlir"cosmd
=% )y ©=p™T TS duly 0= ™
ma®M dB,

kS du

where B, is the coefficient of cos nv in the expunsion of (C--c)“1

Hence
2 e

S

B,=

and the rate of change of volume

2ma®M C\ _.
et S? <n+-s->e

which is of the order 87a?M(n+1)k**], a quantity beyond that which we neglect.
Hence we may employ the stream function. Let then x denote this function for the
small motion given by & The condition to find it is that for all values of the time ¢

pn__Liya
dt ™ pdvaw
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Considering first the term é=M cos o, the corresponding form for x will be

EY

X-\/(C "‘R’ sin mv

the coefficient Y being determined from the condition

k(C—c)* d
a’S  dv

M cos ny=— {\/(é_c) Y, %ﬁf’;sin mv}

for all values of v when u=u’'. Therefore

M o8 m)__:_lc(C—c)S s {m cos MY lsinvsin m'v} Y,

@S Vv (@C—0) ® (C—o)}
or
Ma? S cosnw __ ' . .
b (C—o)— —3{2mC cos mv—2m cos mv cos v— sin mv sin v}Y,,
ZMaSS cosny m-+1

om—1 —— 2 »
W0 (O 2{2m €08 1w ———=— cos (m—+1)v——55 cos (m—l)v} Y.
From this we may obtain sequence equations to determine the Y,; but we require
only the most important terms, hence
2MasS

21?/Y = e kc_%

Y, =222 optps
and
_2/24MK R,
n/(C=0) R,

Since the cyclic motion due to this is zero, there is no correction to be introduced
for it as in former cases.
* If ¢ be the velocity potential, the condition for a free surface gives

sin 7w

0=" —d—H(velP+/()

f{(t) being an arbitrary function of the time. The velocity normal to the surface is of
the first order of small quantities, and its square is to be neglected.
The velocity along the surface is

au
where U is the velocity determined in § 10 and

II
S —3Us=
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Hence

B0, EHSD=0

Now ¢ is the flow along any curve from a fixed point up to the point in question.
Let us take the curve to be formed by a straight line from the centre in the plane of
the ring (v==) up to the surface (v=u'), and then along the ring to the point (v’ v).
The first part will be a function of the time alone, and will therefore disappear with
f(t); of the part along the ring, that due to the cyclic motion will be constant, and

therefore the corresponding part in ¢ will disappear. The part depending on the
velocity of. translation will be proportional to x, which will introduce a quantity

proportional to z in ¢. This will contain terms in cos v, which will not enter again.

Hence 2 must be equated to zero, or the velocity of translation will not be affected.
There remains only the part depending on the flow along the surface due to the
motion x. This we proceed to find. Denoting it by ¢,

1 dy du dn
= f [;_) du dn dv l, v

20°My/(2F) d
W.( ((/ )[d \/(C ] sin nvdv

208Mr/ (25) (~ S :
=_%)jv{_%m+(nz— 1/ (C—c)—--»} sin nodv

the principal part of which is

8= =20 44 (02— ) %) foos m— (=173

The part of this, independent of cos nv, will disappear with f{¢).
Further, since U %% is multiplied by & we must only take their lowest terms, which

are independent of ». Finally then equating to zero the coefficient of cos nv
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To the order here reached
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The coefficient of M is always positive ; hence the hollow is stable for displacements
of this kind, and the time of vibration for displacement of order = is

47ralc { 1 Pupt Pn_l}
n Puyy—Puy

Since throughout our approximations we have neglected 4 compared with unity, we
may simplify this further by obtaining the value of the expression under the square

root to the same order,
Now
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The time of vibration may also be written in the forms

Mp 1< Pni1+ P —1> Hp
911 P 9T/

which shows that the time is independent of the velocity of translation, a result which
has important bearing on the theory that atoms of matter are hollow vortices. For
the different orders of vibration, the time of vibration varies inversely as the square
root of the number of crests running round the hollow.

14. Pulsation of hollow.—In the preceding case, n=0 would correspond to pulsa-
tions of the hollow, in which therefore the whole motion is a change of volume, and
the use of the stream function is not allowable. But as it happens, the application of
the velocity potential is here very easy. Let, as in Art. 13, the displacement be

iven b
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Then the velocity potential is

with
.;; ¢ = ;c i? when u=1u’
Therefore
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Therefore time of pulsation
_47{7}0&70\/11 ER. ( log ]>

and therefore varies slowly with the energy.
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